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The orbits of  bound parucles passing through the symmetry axis of the Kerr spaceUme are considered A simple expression 
is derived gavmg the perlapsls advance of the almost spherical subclass of such polar orbits m terms of the mass  and spin 
parameters of the Kerr soluuon of Einstein's equations. 

The magnetic-like components of the gravita- 
tional field produced by rotating objects give rise 
to the interesting class of phenomena coming un- 
der the heading of inertial frame dragging. These 
effects were first studied in the context of the 
Thirring and Lense [1] approximate solution of 
Einstein's equations. It was thereby discovered 
that the rotation of the gravitating mass forces the 
line of nodes of bound non-equatorial orbits to 
advance in the sense in which the central mass is 
rotating. Actually, this effect is supposed to be 
measurable in the case of the gravitational field of 
the earth, as argued by van Patten and Everitt [2], 
who have proposed a method of measuring it 
using two satellites in polar orbit. 

Since the Lense-Thirring metric agrees asymp- 
totically with that of Kerr, one expects that all 
effects associated with geodesic motion in the 
former solution will be present in the geodesic 
orbits of the latter. Indeed, the extensive qualita- 
tive as well as quantitative analysis of geodesic 
motion in the Kerr spacetime, which has been 
carried out by several investigators, especially after 
Carter [3] proved the separability of the corre- 
sponding Hamilton-Jacobi equation, has shown 
that this is indeed the case. (See ref. [4] for a 
thorough presentation of this analysis as well as 
an extensive list of the relevant references.) Thus, 
it has been shown that, in general, bound timelike 
orbits are drastically affected by the angular 
momentum of the "source" and wander around in 

space over a wide range of the angular coordi- 
nates, t~ and % of the Boyer-Lindquist (t, r, 0, 
9~) coordinate system. 

However, even when complete integration of 
the geodesic equations is feasible, the resulting 
expressions are quite complicated. This masks the 
fact that the qualitative features of geodesic mo- 
tion in the Kerr spacetime are essentially simple 
and renders the comparison with the Schwarzschild 
case unreasonably difficult. 

In the present paper we attempt to lift this 
handicap. This is made possible by restricting our 
considerations to the subset of almost spherical 
timelike orbits passing through the symmetry axis 
of the Kerr spacetime, as such polar orbits exhibit 
all the interesting features of bound timelike geo- 
desics not hitting the horizon. An expression for 
the azimuthal and latitudinal precession of the 
periapsis of such orbits is derived which, more 
than being simple, is valid over the whole range of 
values of the radial coordinate for which stable 
orbits are allowed, including, of course, the 
asymptotic Lense-Thirring region. 

Consider, therefore, a particle of rest mass # 
moving in the Kerr spacetime. As shown by Carter 
[3], its equations of motion admit four first in- 
tegrals one of which reads 

p4~}2 = Q _ a 2 F  2 cos2~ _ L 2 cot2t$. (1) 

Here 

p2 = r 2 + a 2 co s2 t} ,  (2) 
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Q = K -  ( L  z -  aE) z, (3) 

1`2 _= 1 - E 2, (4) 

and a dot denotes differentiation with respect to 
the proper time parameter, ~-. E and Lz stand for 
the particle's energy and angular momentum along 
the symmetry axis, respectively, and K is Carter's 
constant. For convenience, the fourth constant of 
the motion, /~, was set equal to unity. 

It follows from (1) that in order for the orbit to 
reach the polar axis, where cos2O = 1, it is neces- 
sary that 

Lz = o. (5) 

The same equation gives 

k 2 - a21`2/Q < 1 (6) 

as the condition for bound orbits, corresponding 
to 1`2> 0, to reach the axis from points where 
cos2~ ~ 0. 

Eq. (5) leads to considerable simplification of 
the remaining equations of motion. They become 

o 4 i ' 2 = R ( r ) = ( r 2  +a2)2[E 2 -  v2 ( r ) ] ,  (7) 

02, = 2 a g E r / A  ( r ), (8) 

and 

O2i = - a 2 E  sin20 + E(  r2 + a2)2 /A(r  ), (9) 

where 

A ( r )  = r 2 - -  2Mr + a 2 (10) 

and 

V2( r )  = A ( r ) ( K + r 2 ) / ( a 2 + r 2 )  2. (11) 

As spherical orbits one defines the orbits for 
which r = r0, a constant. This means that r 0 is a 
double root of the function R(r )  defined by (7). 
Thus, for a spherical polar orbit 

R ( r )  = (r - ro)2G(r), (12) 

where 

G ( r )  = - 1`2r2 + 2 ( M  - r2ro)r - a2Q/r 2. (13) 

In this case, the constants of the motion are 

determined by r 0. Specifically, 

M ( r  4 - 4Mr 3 + 2a2r 2 + a 4) 
I `2 

and 

Q= 

(a  2 + rX)(r  3 - 3Mr 2 + a2r + Ma 2) 
(14) 

Mr2(r4 + 2aZr2 - 4Ma2r + a4) (15) 

( r  2 + a2)(r  3 -  3Mr z + a2r + Ma2) ' 

where, for convenience, r 0 has been replaced by r. 
Using the last two equations and (6), one obtains 

k 2 = (a /r )2(r4  - 4Mr3 + 2a2r2 + a 4 )  (16) 
( r  4 + 2 a E r  2 -- 4 M a E r  + a 4)  

Eqs. (1) and (7)-(9) have been integrated by 
Wilkins [5], for the case of spherical orbits with 
a z -- 1 and by Johnston and Ruffini [6] for a 2 < 1. 

When the particle coordinate r varies, (1) and 
(7) can be combined to give 

dr /~ /g ( r )  = d~k/¢Q(1 - k 2 sin2qj) (17) 

where the latitude angle q~ is defined by 

= ½n - O. (18) 

Thus 

f dr/ R~-~ = F(,k, k ) / v~ ,  (19) 

where F(q~, k) is the elhptic integral of the first 
kind. 

Suppose, now, that the particle under consider- 
ation has energy, E, slightly different from the 
energy, E0, of a stable spherical orbit at r 0, but 
the same K. Then, one can use (7) and (12) to 
write 

R(r)=(r  2 + a ~ ) 2 [ e  ~ - Eo 2 + Eo ~ -  V2(r)]  

= (r + e g )  + ( r -  
(20) 

It follows from this equation that the turning 
points of the r-motion are located at coordinate 
value r 1 determined by 

( r  1 - ro) 2 = - ( r  2 + a2)2(E 2 -  E 2 ) / G ( r l ) ,  (21) 
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which is close to r 0 due to the smallness of ( E  2 _ 

E 2). This, in turn, allows one to write 

R ( r ) =  - G ( r o ) [ ( r l - r o ) 2 - ( r - r o ) 2 ] .  (22) 

and, then, 

f dr  -1,2 s i n - l ( r  -- ro) 
~ = [  - G ( r o ) ]  [ r l - r o  [ (23) 

Thus, (19) yields 

r = r o +  [ rl - ro l s i n (  m [  F (  ~P, k ) - F (  ~ o, k ) ] } ,  

(24) 

where 

m 2 = - G ( r o ) / Q .  (25) 

Eq. (25) implies that the orbiting particle com- 
pletes a radial oscillation when the latitude changes 
by an amount  3q,= ff-~k0 determined by the 
equation 

F (  ~p, k )  - F (  ~p o, k )  = 2 n / m .  (26) 

Correspondingly, the azimuthal coordinate in- 
creases by 3cp, which, to the same order of ap- 
proximation, is given by 

2 a M E r o  2n  
(27) 399 A ( r o ) Q 1 / 2  m 

Substituting (13)-(15) into (26), one obtains the 
exact expression 

m 2 = ( r  6 - 6 M r  5 + 3a2r  4 + 4 M a E r  3 + 3a4r 2 

-- 6 M a a r  4-  a 6) 

X [ r 2 ( r 4 4 - E a 2 r 2 - 4 M a 2 r + a 4 ) ]  -1 ,  (28) 

giving the quantity m in terms of the mass and 
spin parameters, M and a, of the Kerr spacettme 
and the radius, r, of the associated stable spheri- 
cal orbit. 

As our main result, given by (26) and (27), 
involves elliptic integrals, it seems a bit com- 
plicated. The range of values which the parameter  
k takes, however, allows for a simplification. 
Specifically, k remains quite small even when an 
extreme Kerr  black hole is considered, for which 
a 2 = M  2. In this case, for example, k 2 <0.011 
down to the last stable orbit which is located at 
r = 5.275M. As a result, the approximate expres- 

sion 

F(  ~k0, k )  --- tk + (k /2 )2 (  ~b - sin ~k cos ~p ) (29) 

for the elliptic integral is qmte satisfactory. Thus, 
the change of the angle of latitude can be written 
in the form 

8~b = 8t~ (°) -- ( k / 2 ) 2 1 8 ~  (°) - sin 8~ (°) 

× c°s (8~  (°) + ~0)] ,  (30) 

where 

8~, (°) = 2 n / m .  (31) 

A further simplification obtains, when one is 
interested in the asymptotic region where the Kerr 
solution of Einstein's equations reduces to the 
Lense-Thirr ing one. In this region (16) and (28) 
become 

k 2 =  ( a / r )  E (32) 

and 

m 2 = 1 - 6 M / r  + a E / r  E, (33) 

respectively, while (30) reduces to 

&k = 8ff (°) [1 - k E sinE(~0/2)] .  (34) 

Finally, when the spin parameter, a, vanishes 
and the Kerr metric reduces to that of 
Schwarzschild, (26) and (27) give the well-known 
result [7] 

8rp = O, 3q, = 2 n / ~ / 1  - 6 M / r ,  (35) 

corresponding to motion in a fixed plane. 
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